

The endocannabinoid system and neuropathic pain

Rafael Maldonado*, Josep Eladi Baños, David Cabañero

Abstract

The research of new therapeutic strategies for neuropathic pain represents a major current priority. Important drawbacks to advance in the development of these therapies are the limited translational value of the animal models now available and the elucidation of the complex neuronal and immune pathophysiological mechanisms underlying neuropathic pain. One of the neurotransmitter systems participating in neuropathic pain control that has recently raised a particular interest is the endocannabinoid system. This system is highly expressed in neurons and immune cells, and it plays a crucial role in the development of neuropathic pain. Preclinical studies have provided important findings, revealing the potential interest of the endocannabinoid system for the treatment of neuropathic pain. These studies have reported the analgesic effects of cannabinoid agonists in multiple neuropathic pain models, and they have identified specific targets within this system to develop more effective and safe analgesic compounds. However, further studies using more relevant neuropathic pain animal models are required to confirm these interesting results. Several clinical studies suggest that cannabinoids significantly reduced neuropathic pain, although most of these trials fail the required standards of quality. The different pain patient populations included in the systematic reviews also make it difficult to get adequate conclusions. Therefore, additional clinical trials that consider an adequate number of patients, the use active treatments as controls, and longer duration of administration are required to have an adequate profile of the effectiveness and safety of cannabinoids in neuropathic pain.

Keywords: Neuropathic pain, Animal models, Cannabinoid, Clinical research, CB1 receptor, CB2 receptor, Nociception, Emotional alterations, Cognition

1. Introduction

Chronic neuropathic pain is a devastating pain syndrome affecting 7% to 10% of the general population, 40 with higher incidence in the aged people. 14 Neuropathic pain patients have lower labor productivity, use more health resources, and are more likely to develop mental disorders compared with those with other chronic pain.⁵⁷ It has been estimated that cost related to neuropathic pain could amount to as much as \$160 billion per year only in the United States, which represents approximately one quarter of all chronic pain costs. 36 An important limitation at the present moment is the absence of effective treatment for neuropathic pain. Indeed, tricyclic antidepressants, serotoninnorepinephrine reuptake inhibitors, and anticonvulsants constitute the first-line treatment for neuropathic pain.4 However, the efficacy is only modest, and the number of patients needed to treat for 50% pain relief is estimated in 3 to 9.4.32 Topical capsaicin and lidocaine are second-choice agents with discrete efficacy recommended for peripheral neuropathies, and other treatments such as opioids or botulinum toxin-A are weakly recommended because of the side effects or poor evidence of efficacy.³² Therefore, the research of new therapeutic strategies for neuropathic pain represents a major current priority.

2. Significance and limitations of the animal models

The existence of appropriate animal models is crucial for understanding the biological basis of the different diseases. The limited translational value of the animal models currently available to investigate neuropathic pain represents an important drawback to advance in understanding the pathophysiological mechanisms involved and to develop new therapeutic strategies. Neuropathic pain is characterized by the presence of spontaneous pain and signs of sensory loss, which can sometimes be accompanied by the gain of function, ie, allodynia and hyperalgesia. Sensory manifestations are often associated to emotional and cognitive alterations. A number of disorders affecting the somatosensory system have been modeled to investigate neuropathic pain, although the most common neuropathic pain models mimic traumatic injuries to the nervous system (Table 1). Injury and disease-based models are successful in reproducing allodynia and hyperalgesia associated to neuropathic pain. 49,93 Although allodynia and hyperalgesia are important complaints affecting up to 64% of the patients, the cardinal symptom of neuropathic pain is spontaneous pain that affects 96% of patients,⁸ and it has not been evaluated in appropriate animal models until recently. Direct measures of spontaneous pain, such as changes in facial expression, locomotor activity, or rearing, are transient in models of peripheral neuropathic pain, and they have not been widely used to evaluate drug efficacy. 55,71,107 Recent operant self-medication paradigms or conditioned place preference tests are promising indirect measures useful to evaluate

Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.

Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut (CEXS), Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain

*Corresponding author. Address: Laboratori de Neurofarmacologia, Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona (PRBB), C/Dr Aiguader, 88, 08003 Barcelona, Spain. Tel.: +34933160824; fax: +34933160901. E-mail address: rafael.maldonado@upf.edu (R. Maldonado).

PAIN 157 (2016) S23-S32

© 2015 International Association for the Study of Pain http://dx.doi.org/10.1097/j.pain.00000000000000428

February 2016 ◆ Volume 157 ◆ Number 2 ◆ Supplement 1

Table 1

S24

Summary of animal studies evaluating efficacy of cannabinoids in neuropathic pain.

Name of the model	Principle of the model	Cannabinoid behavioral responses
Traumatic models—peripheral nerve injury Chronic constriction injury	3-4 loose ligatures around sciatic nerve ²²	Mixed CB1R/CB2R and CB2R agonists, cannabinoid-reuptake and FAAH*/MAGL inhibitors reduced thermal and mechanical nociception. Acute rimonabant (selective CB1R antagonist) showed pronociceptive effects. CB2R agonist showed antidepressant effect. ⁹³ Intrathecal CB1R/CB2R but not CB2R agonist inhibited mechanical nociception. ¹³ FAAH and MAGL–KO mice showed unaltered nociception*; wild-type mice developed tolerance to antinociception after repeated treatment with high doses of MAGL but not with FAAH inhibitors. ⁹⁹ A CB1R-positive alloster modulator reduced
Partial sciatic nerve ligation (Seltzer model)	Tight ligation of cranial 1/3 of sciatic nerve ²²	mechanical sensitivity. 45 Mixed CB1R/CB2R,* CB2R agonists,* cannabinoid- reuptake and FAAH*/MAGL inhibitors reduced thermal and mechanical nociception. CB2R-KO mice showed contralateral hypernociception*. Rimonabant and CB2R inverse agonists induced pronociceptive effects. 93,104 CB1R-KO mice showed enhanced anxiety and depression-like behavior.* 92
Spinal nerve ligation or transection	L5-L6 ligation or transection ^{22,93}	Mixed CB1R/CB2R*, CB2R agonists,* and FAAH inhibitors reduced thermal and mechanical nociception. Mixed CB1R/CB2R agonist—mediated antinociception and motor impairment were abolished in CB1R-KO mice.* Treatment with CB1R antagonist enhanced CB2R-mediated antinociception. 87,93 MAGL-KO and wild-type mice showed similar mechanical and thermal nociception. *.17
Saphenous nerve injury	Saphenous nerve partial ligation, demyelination, or constriction with 2 loose ligatures ⁹³	Mixed CB1R/CB2R agonist suppressed thermal and mechanical nociception. 93
Orofacial pain, trigeminal neuralgia Spared nerve injury	Two loose ligatures around infraorbital nerve ⁴⁹ Transection of tibial and common peroneal nerves ²²	Mixed CB1R/CB2R agonist reduced mechanical nociception, without developing tolerance. 93 Mixed CB1R/CB2R agonists suppressed thermal and mechanical nociception, an effect reduced in mice lacking CB1* in nociceptors. 93 A CB2R agonist maintained an operant behavior associated to spontaneous pain relief and inhibited mechanical nociception 93 MAGL-KO and wild-type mice showed similar mechanical nociception.* 86
Sciatic nerve axotomy Tibial nerve injury	Ligation and transection of sciatic nerve ²² Axotomy of tibial branch of sciatic nerve ⁹³	Mixed CB1R/CB2R attenuated thermal and mechanical nociception. ⁹³
Traumatic models—spinal cord injury Spinal cord clip—compression injury	Compression of T6-T8 segment with microaneurysm clip ⁹³	Mixed CB1R/CB2R agonist suppressed mechanical nociception. ⁹³
Weight drop or contusive spinal cord injury	Drop of a weight onto exposed spinal cord ⁴⁹	Mixed CB1R/CB2R agonist suppressed thermal nociception. ³
Spinal hemisection Drug-induced models	Hemisection cranial to L1 dorsal root ⁴⁹	——————————————————————————————————————
Streptozocin-induced diabetic neuropathy	Subcutaneous streptozocin administration ^{22,49}	Mixed CB1R/CB2R, CB1R, and CB2R agonists suppressed mechanical sensitivity. THC enhanced analgesic effect of morphine. A mixed agonist reversed cognitive impairment. 93
Alcohol-induced neuropathy Chemotherapy-induced neuropathy	Chronic dietary ethanol consumption ⁴⁹ Repeated administration of paclitaxel, vincristine, oxaliplatin, cisplatin ^{22,49}	Mixed CB1R/CB2R and CB2R agonists inhibited mechanical and thermal sensitivity. ⁹³ FAAH inhibitor reduced mechanical nociception. ¹¹¹
Antiretroviral-induced neuropathy	Zalcitabine, didanosine, stavudine administration ^{49,51,93}	FAAH inhibitor reduced mechanical sensitivity. 93
Viral neuropathy Postherpetic neuralgia	Subcutaneous hind paw inoculation of Varizella zoster virus-infected cells ⁴⁹	Mixed CB1R/CB2R agonist and FAAH inhibitor reduced mechanical and thermal sensitivity. 93

(continued on next page)

Table 1 (continued)

Name of the model	Principle of the model	Cannabinoid behavioral responses Mixed CB1R/CB2R agonist reduced mechanical and cold sensitivity. 77,93		
HIV-related neuropathy	Perineural HIV-gp120 administration ⁴⁹			
Chemically induced models				
Sciatic inflammatory neuropathy	Injection of zymosan or TNF-alpha around sciatic nerve ⁴⁹	_		
Excitotoxic spinal cord injury	Spinal administration of excitatory amino acids ⁴⁹	_		
Orofacial pain	Application of CFA to the infraorbital nerve ⁴⁹	_		
Transgenic models				
Diabetic polyneuropathy	Diabetic BB or Wistar rats, leptin-deficient mice ^{22,49}	_		
Cancer neuropathy				
Neuropathic cancer pain	Inoculating Meth A sarcoma cells to the proximity of sciatic nerve ⁴⁹	_		
Vascular models				
Central poststroke pain	Hemorrhagic stroke lesion in the ventral posterolateral nucleus of the thalamus ¹²¹	_		
Photochemical spinal cord or sciatic nerve injury	Thrombosis in sciatic nerve or spinal cord blood vessels, using photosensitive dye and laser ⁴⁹	_		
Autoimmune models				
Experimental autoimmune encephalomyelitis	Immunization by subcutaneous injection of myelin oligodendrocyte glycoprotein ⁹³	_		

^{*} Demonstrated through genetic approach.

both the rewarding effect of pain relief and the abuse potential of candidate drugs. 70,78

Neuropathic pain is more common in old people and women.^{7,14} However, most basic research studies have been performed only in young male rodents, although this tendency is changing partially due to the failure of clinical trials.²⁰ Recent works taking into account these important experimental conditions have found striking differences depending on sex and age.^{60,106}

Sleep disturbances (37%-60% prevalence), emotional disorders (33%-42% prevalence), cognitive impairment (11.4% prevalence), pain-related fear, or deficits in social behavior bathic pain that should also be evaluated in animal models. These alterations and their pharmacotherapy may be independent of hyperalgesia and allodynia, and an additional effort must be made to evaluate them in basic research studies. Taking into account not only the nociceptive manifestations but also the emotional and the cognitive consequences of neuropathic pain will allow to embrace the complexity of neuropathic pain syndromes and should improve the translational value of animal models.

In addition, a frequent problem of neuropathic pain animal models is the interpretation of results without considering the timing of treatment. Indeed, most failures in phase-II clinical trials are due to lack of efficacy (50%) or drug toxicity (25%). ⁴⁷ Therapeutic efficacy could be different when the consequences of the injury to the nervous system are not fully developed, which could lead to overestimations of the results. ²⁵ Using appropriate animal models to elucidate the mechanisms of action of the candidate drugs, establishing clinically validated targets, and finding correlation between the alleviation of neuropathic pain and the inhibition of the proposed target should increase the predictability of these models and facilitate the understanding of the neurobiological mechanisms underlying this syndrome.

3. Pathophysiological mechanisms

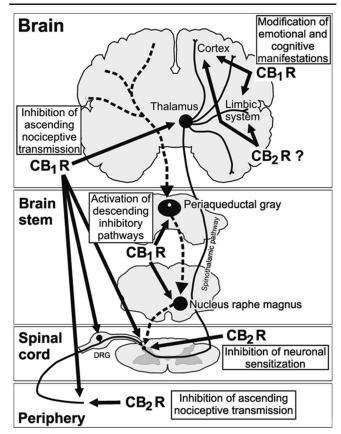
The pathophysiological mechanisms underlying neuropathic pain include complex peripheral and central sensitization processes

mainly involving neurons and immune cells. Peripheral nerve injury involves damage to primary afferents and recruitment of immune cells releasing cytokines, nerve growth factor, and other signaling substances. 100 Nerve fibers develop ectopic activity and become hyperexcitable and pharmacologically dysfunctional. Several specific changes at the peripheral level could underlie this nerve sensitization, including dysregulation or redistribution of potassium and voltage-gated sodium channels, 54,110,129 increase functionality of purinergic receptors 19 and calcium channel subunit $\alpha_2\delta1,^{10}$ and reductions in opioid receptor expression. 82 In contrast, an enhancement of cannabinoid receptors has been reported at the peripheral and spinal levels during neuropathic pain. 68,128

After peripheral nerve injury, heightened firing from primary afferents render postsynaptic spinal cord neurons hyperexcitable, mainly through the activation of glutamate receptors. ⁵⁸ Loss of GABA and glycinergic interneurons and a change in the polarity of GABA or glycinergic transmission also contribute to this activation. ^{34,69} Serotonergic, noradrenergic, opioid, and cannabinoid bulbospinal neurons constitute a descending inhibitory input over the spinal cord dorsal horn under these pathological conditions. ^{83,93} Important adaptive changes also occur in other somatosensory areas, such as thalamus and somatosensory cortex. ^{38,69} However, plastic changes are increasingly reported in brain areas involved in emotional and cognitive aspects of neuropathic pain, including cingulate cortex, amygdala, hippocampus, prefrontal cortex, or nucleus accumbens. ^{16,76,79}

Immune mechanisms are also highly intertwined during neuropathic pain. Nerve growth factor, chemokine ligands, and leukotriene-b4 released by primary afferents and denervated Schwann cells rapidly attract neutrophil granulocytes and resident macrophages to the injured site. Immune cells increase the levels of proinflammatory mediators, facilitating regrowth and repairing and also promoting peripheral sensitization. In the dorsal root ganglia, activated satellite glial cells contribute to neuronal sensitization. This is accompanied by disruption of the nerve-blood barrier by matrix metalloproteases and vascular endothelial growth factor and infiltration of circulating macrophages and lymphocytes.

CFA, complete Freund adjuvant; FAAH, fatty acid amide hydrolase; KO, knockout; MAGL, monoacylglycerol lipase; CB1R, CB1 receptor; CB2R, CB2 receptor; THC, tetrahydrocannabinol; HIV, human immunodeficiency virus; HIV-gp120, envelope glycoprotein GP120 of the HIV envelope; TNF-alpha, tumor necrosis factor alpha.


In the spinal cord, neuronal damage is followed by microglial cell activation through purinergic, toll-like, or brain-derived neurotrophic factor (BDNF) receptors. Microglia phagocyte cell debris and release numerous inflammatory mediators. These spinal cord immune responses are modulated by the endocannabinoid system (ECS) during neuropathic pain. Increasing evidence also suggests an important role of astrocytes in the advanced stages of neuropathic pain, through the release of pronociceptive mediators. Refer Finally, oligodendrocyte damage can impair axonal repairing, reflected in alterations in conduction velocity and neuropathic pain phenotype. Immune or glial response may be similar in limbic system areas, and it may participate in the emotion-like manifestations of neuropathic pain.

One of the neurotransmitter systems involved in the pathophysiology of neuropathic pain that has recently raised a particular interest for the development of new therapeutic strategies is the ECS. This system is highly expressed in neurons and immune cells that are crucial for the development of neuropathic pain.

4. The endocannabinoid system

The ECS plays a key role in pain control and the physiopathology of neuropathic pain. It is integrated by the cannabinoid receptors, their endogenous ligands, and the enzymes involved in the synthesis and degradation of these ligands. At least 2 different cannabinoid receptors, CB1 receptor (CB1R) and CB2 receptor (CB2R), have been identified. Both receptors are 7 transmembrane domain receptors coupled to inhibitory G proteins, and their distribution and physiological role are quite different.85 Generally, CB1R are highly expressed in neurons of central nervous system (CNS),26 whereas CB2R are mainly located in immune cells, 73 although they are also expressed in CNS neurons. 103 The most important endogenous ligands for cannabinoid receptors are N-arachidonoylethanolamine (anandamide) and 2arachidonoylglycerol (2-AG).85 These endocannabinoids are synthesized from cell membrane phospholipids mainly postsynaptically, acting as retrograde messengers that regulate the release of multiple presynaptic neurotransmitters, and they are inactivated by reuptake mechanisms followed by enzymatic degradation. ¹²⁶ The ligand 2-AG is synthesized from diacylglycerol by diacylglycerol lipase and is primarily metabolized by monoacylglycerol lipase (MAGL).²⁸ Anandamide is synthesized from the phosphatidylethanolamine by the action of N-acyltransferase and phospholipase D, and it is mainly degraded by fatty acid amide hydrolase (FAAH).⁶⁵

The ECS plays a crucial role in the inhibitory control of the nociceptive stimuli by acting at peripheral, spinal, and supraspinal levels (Figure 1). At the periphery, CB1R located in nociceptive terminals inhibit nociceptive transmission, whereas CB2R located in immune cells and keratinocytes reduce the release of pronociceptive agents.⁴⁴ Moreover, CB1R are expressed in the dorsal root ganglia and in the nociceptive and nonnociceptive sensitive terminals in the spinal cord dorsal horn, where they inhibit neurotransmitter release and pain transmission.⁷⁵ CB2R in the spinal cord modulates the immune responses, leading to neuronal sensitization during chronic pain. 88,91 At the supraspinal level, CB1R inhibit ascending nociceptive transmission, mainly at the thalamus level, modify the emotional pain component acting at the limbic system and cortical areas, and activate the descending inhibitory pathway through the inhibition of GABA release in the periaqueductal gray and rostral ventral medulla.75,112

Figure 1. Role of the endocannabinoid system in the control of pain at the peripheral, spinal, and supraspinal levels. Cannabinoid receptor activity inhibits the ascending nociceptive transmission, activates the inhibitory descending pathway, and modifies the emotional component of pain.

5. Preclinical studies on endocannabinoid system and neuropathic pain

Animal studies have provided important findings revealing the role of the ECS in the pathophysiology of neuropathic pain and its potential interest to identify new pharmacological tools for neuropathic pain treatment. These studies have mainly used genetically modified mice with selective mutations in specific ECS components and pharmacological agents that modify the ECS activity (Table 1).

Several studies have demonstrated that the constitutive deletion of CB1R did not significantly modify the manifestations of neuropathic pain in mice. 75 In contrast, the selective CB1R deletion in peripheral nociceptors enhanced neuropathic pain manifestations and reduced the analgesic effects of systemic cannabinoid agonists underlying the role of peripheral CB1R in neuropathic pain.² However, the constitutive suppression of CB1R enhanced anxiety-like and depression-like behavior promoted by chronic neuropathic pain, suggesting a prominent role in these emotional manifestations. 92 The constitutive deletion of CB2R generates a clear enhancement of neuropathic pain manifestations revealed by a mirror image of pain in the contralateral unaffected side. 91 In agreement, the overexpression of CB2R in the CNS attenuates neuropathic pain manifestations. 91 An immune response involving the release of microglia and interferon-y seems responsible of these CB2R-mediated effects. 90 The endocannabinoids that could be involved in these mechanisms have not been yet clarified. Indeed, the development and expression of neuropathic pain was not modified in

FAAH- and MAGL-knockout mice^{75,99}; CB1 desensitization could underlie the absence of antinociceptive effects in MAGL-knockout mice.⁹⁹

Pharmacological studies revealed that nonselective cannabinoid agonists and selective CB1R and CB2R agonists induced antinociceptive effects in multiple animal models of neuropathic pain, ⁷⁵ whereas the acute blockade of CB1R or the inverse CB2R agonism produced pronociceptive effects ^{93,104} (**Table 1**). Most of the studies have reported these effects on classical animal models of evoked allodynia or hyperalgesia or both. However, few studies have used animal models evaluating more relevant aspects of neuropathic pain. ⁹³ Thus, recent studies have revealed that nonselective cannabinoid agonists reduce the cognitive impairment associated with diabetic neuropathy, ²⁴ and selective CB2R agonists reduced the depression-like behavior ⁴³ and alleviated spontaneous neuropathic pain in an operant model of self-medication. ³⁹ Interestingly, these CB2R agonists are devoid of the cannabimimetic effects of CB1R agonists. ⁷⁴

The blockade of endocannabinoid reuptake and the pharma-cological inhibition of FAAH produce antinociceptive effects that did not develop tolerance in neuropathic pain models, ⁹⁹ although these effects were less consistent than in chronic inflammatory pain models ^{50,96} and some contradictory results have been reported depending on the experimental conditions. ⁵⁹ In contrast, MAGL inhibition produced clear antinociceptive effects in neuropathic pain models, which underwent tolerance with CB1R desensitization after repeated treatment. Both FAAH and MAGL inhibitors produced limited cannabimimetic effects. ^{46,99}

Therefore, preclinical studies have underlined the interest of the ECS for neuropathic pain treatment, and they have identified new possible approaches to obtain effective analgesic responses, minimizing the classical side effects related to CB1R agonists. However, the majority of studies have just evaluated the modification of the nociceptive sensitization associated with neuropathic pain. Most of these promising results must be confirmed in more relevant models of neuropathic pain allowing to evaluate the spontaneous pain manifestations, sleep disturbances, and emotional and cognitive impairments that are crucial in this complex pain syndrome. Additional efforts must also be taken to match the age and sex of the animal samples and time schedule of the experimental treatments with the real clinical conditions. In particular, further studies including these experimental conditions would be necessary to identify the potential interest that has risen from the recent results obtained with CB2R agonists and MAGL and FAAH inhibitors.

6. Cannabinoids and neuropathic pain treatment in humans

In agreement with the preclinical data, the analgesic effects of *Cannabis sativa* derivatives have also been reported in humans. Cannabis sativa contains around 70 phytocannabinoids, and the main psychoactive component is $\Delta 9$ -tetrahydrocannabinol (THC). Cannabis sativa has been used for pain treatment more than 20 centuries ago in ancient China, Greece, Rome, Israel, and India. 48 More recently, cannabis use has been reported in population-based studies of patients with multiple pain syndromes, including neuropathic pain. 84,117 In the past 20 years, several cannabinoid preparations were available for neuropathic pain, including oral dronabinol and nabilone, and cannabis extracts to be administered by oromucosal, inhaled, and vaporized route. 118

Early systematic reviews reported that cannabinoids were not better than codeine in controlling pain without advocating their

widespread use. 15 However, the number of patients was limited, and a few randomized clinical trials (RCTs) were analyzed including multiple pain syndromes. They analyzed several clinical trials, but only one considered neuropathic pain and advised that more RCTs should be performed to evaluate the efficacy of cannabinoids. More recent systematic reviews have identified the existence of moderate analgesic effects of cannabinoids compared with placebo and an improvement in sleep, without serious adverse effects; they concluded that the cannabinoids were modestly effective and safe in neuropathic pain. 62,64 However, the only systematic review of cannabinoids in neuropathic pain has been recently published. 12 This study reviewed 13 highquality RCTs and suggested that cannabinoids provide analgesia in patients with neuropathic pain who are refractory to other treatments. Another recent review included 6 trials with marijuana in 325 patients with neuropathic pain and concluded that it may be useful, although some significant side effects, such as addiction and worsening of psychiatric illnesses should be taken into account.41 The authors also suggested that new studies were needed to evaluate the consequences of long-term treatments and to establish the best form of drug administration. A recent meta-analysis that has considered 9 clinical trials with the oromucosal administration of nabiximols (1:1 mixture of THC and cannabidiol) concluded that this cannabinoid formulation has only weak recommendations against its use in neuropathic pain.

Clinical research on cannabinoids has widely increased in the past 15 years. New designs, larger-scale studies, higher doses, and change of route of administration have allowed to accumulate evidences to clarify if cannabinoids have an opportunity as analgesics. Given the information available, we have separately considered the analysis of clinical trials depending on how cannabinoids were administered in neuropathic pain: orally (mainly nabilone and dronabinol), smoked or vaporized (marijuana), and oromucosal (THC plus cannabidiol).

7. Clinical trials with orally administered cannabinoids

The main oral cannabinoids used with medical purposes were ajulemic acid (CT3, a major metabolite of THC with CB1R activity), cannabidiol, dronabinol, levonantradol, nabilone, and THC (Table 2). A moderate evidence supports the use of these cannabinoids in chronic pain and spasticity. 122 Only an RCT with CT3 has been published with neuropathic pain patients of varying etiologies and demonstrated its effectiveness in reducing pain without causing cannabinoid-like CNS side effects. 53 Dronabinol was studied in 3 RCTs. No beneficial effect was seen in a pilot study with titrating dosing in refractory neuropathic pain,5 whereas modest effects were observed in neuropatic pain patients with spinal cord injury, and a third clinical trial reported that dronabinol was no more effective than active placebo in a crossover study with only 7 adults. 94 Experience with nabilone in neuropathic pain is scarce. A study comparing dihydrocodeine with nabilone reported that the second was less effective and with a worst safety profile. 35 However, this study was criticized in the grounds of patient dropout, and because allodynia and sympathetic dysfunction were overrepresented in these patients.²¹ A trial in patients with painful diabetic neuropathy showed that nabilone relieved symptoms and improved disturbed sleep and overall quality of life when compared with placebo. 109

8. Clinical trials with smoked and vaporized cannabis

The most traditional way of consuming cannabis is by smoking because their effects are more rapid. However, the use of this S28

Table 2
Summary of randomized clinical trials assessing analgesic efficacy of cannabinoids in neuropathic pain.

Authors	Study design (patients)	Indication	Agent and daily dose	Control	Duration	Results	Adverse events
Oral administration							
Karst et al. ⁵³	Crossover (24)	Chronic Np	CT3 40-80 mg	Р	1 wk	CT3 > P	Minor tiredness and dry mouth
Svendsen et al. 108	Crossover (24)	Central Np in MS	D, up 10 mg	Р	3 wk	D > P	AEs were higher during the active treatment
Frank et al. ³⁵	Crossover (96)	Chronic Np	Nb, up 2 mg	Dc, up 240 mg daily	14 wk	Dc > Nb	No serious AEs but slightly side effects with dihydrocodeine
Rintala et al. ⁹⁴	Crossover (7)	Np after spinal cord injury	D, 5 mg	Dp (25 mg)	28 d	D = Dp	Dry mouth, constipation, fatigue, and drowsiness for both drugs
Toth et al. 109 Smoked and vaporized administration	Parallel (26)	Diabetic Np	Nb 1-4 mg	Р	8 wk	Nb > P	Minor AEs
Abrams et al. ¹	Parallel (55)	HIV-Np	C smoked (3.56%)	Р	5 d	C > P	Mild serious effects, minimal psychoactive effects
Wilsey et al. 124	Crossover (38)	Central and peripheral Np	C smoked (3.5%, 7%)	Р	6 h sessions	C > P	Minimal psychoactive effects
Ware et al. 119	Crossover (23)	Posttraumatic chronic Np	C smoked (2.5%, 6%, 9.4%)	Р	14 d	C > P	No serious AEs
Ellis et al. ³⁰	Crossover (34)	HIV-Np	C smoked (1%-8%)	Р	5 d	C > P	No serious AEs
Wilsey et al. 123	Crossover (39)	Peripheral Np	C vaporized (1.29%, 3.53)	Р	6 h sessions	C > P	Psychoactive effects were minimal and well tolerated
Oromucosal spray							
Wade et al. 114	Crossover (24)	Peripheral and central Np	CBM (THC/CBD) CBD and THC up 120 mg	Р	8 wk	THC > P, $CBD > P$	Predictable AEs generally well tolerated
Berman et al. ¹¹	Crossover (48)	Brachial plexus root avulsion	CBM (up THC, 129.6 mg or CBD 120 mg) and THC	Р	6 wk	CBM = THC = P	Well tolerated with mild to moderate AEs
Rog et al. ⁹⁵	Parallel (63)	Central Np in MS	CBM (up THC, 129.6 mg or CBD, 120 mg)	Р	4 wk	CBM > P	No serious AEs
Nurmikko et al. ⁸¹	Parallel (125)	Peripheral Np	CBM (up THC, 21.6 mg or CBD 20 mg)	Р	5 wk	CBM > P	No serious AEs
Selvarajah et al. ¹⁰¹	Parallel (30)	Diabetic Np	CBM (THC:CBD 1:1 one pump = 2.5/2.5 mg)	Р	12 wk	CBM = P	Six AE-related withdrawals
Langford et al. ⁵⁶	Parallel (339)	Central Np in MS	CBM (up THC, 32, 4 mg/CBM, 30 mg)	Р	14 wk	CBM = P	Less than 10% withdraw in all study groups
Serpell et al. 102	Parallel (246)	Peripheral Np	CBM (THC/CBD spray)	Р	15 wk	CBM > P	Treatments were well tolerated
Lynch et al. 63	Crossover (16)	Chemotherapy -induced Np	CBM (up THC, 32, 4 mg/CBM, 30 mg)	Р	10 wk	CBM = P	Fatigue, dizziness, dry mouth or nausea or both

AEs, adverse events; C, cannabis; CBD, cannabidiol; CBM, cannabis-based medicine; CT3, ajulemic acid; D, dronabinol; Dc, dihydrocodeine; Dp,diphenhydramine; MS, multiple sclerosis; Nb, nabilone; Np, neuropathic pain; P, placebo; THC, tetrahydrocannabinol.

route of administration is complicated for the high risk of abuse and respiratory side effects. Several studies have provided evidences on the efficacy of smoked cannabis in neuropathic pain, such as human immunodeficiency virus—associated neuropathy, 1,30 central and peripheral neuropathic pain, 123,124 and posttraumatic or postsurgical neuropathic pain. The analgesic effects were clear but moderate, whereas the adverse effects were frequent, although not severe. This pharmacological profile has led to the endorsement of these cannabinoids for second-line use in the treatment of central neuropathic pain by European Federation of Neurological Societies. No difference in terms of efficacy could be seen between the different cannabinoids, and smoked cannabis has been advised to be used only in severe neuropathic pain not responding to pharmaceutical cannabinoids and other analgesics. Expression of the several studies of the several studies have provided expressions.

9. Clinical trials with oromucosal spray and Sativex

New ways of delivering cannabinoids have been developed to improve bioavailability and minimize side effects. The most recent way has been a 1:1 mixture of the natural phytocannabinoids THC and cannabidiol in the form of oral mucosal spray

(nabiximols, Sativex, GW Pharmaceuticals Ltd, Salisbury, United Kingdom). This device has been used in several clinical trials controlled with placebo in neuropathic pain, and its beneficial effect has been revealed in multiple sclerosis central pain,95 brachial plexus avulsion, ¹¹ neuropathic pain after peripheral injury, ^{42,80,81,102,114} and diabetic neuropathy. ¹⁰¹ The THCcannabidiol association as an add-on treatment may also improve neuropathic pain associated to multiple sclerosis resistant to other treatment.⁵⁶ In agreement, a recent metaanalysis concluded that this formulation of THC/cannabidiol has weak recommendation against the use in neuropathic pain treatment.³² A recent, single, and pilot study has compared nabiximols with placebo in patients with chemotherapy-induced pain. 63 No global differences were seen, although 6 patients experienced significant decreases in pain compared with placebo. Given the difficulties of relieving this type of pain, authors concluded that these results merit a further full RCT.

10. Caveats of clinical trials

In spite of these interesting findings obtained in the RCTs, clinical research on cannabinoids in pain has been hampered by some

limitations that include the small sample size, the lack of differentiation of pain syndromes and cannabinoid responders, the absence of an adequate assessment of the clinical importance of the observed effects, the safety profiles, the characterization of adverse events, and the long-term consequences of treatments. ¹² The blinding of the studies, due to the psychotropic effects of cannabinoids, is also an important limitation to adequately perform RCTs. The efficacy in multiple sclerosis patients where pain has an important spastic component also improved by cannabinoids, which complicates the final interpretation of the analgesic effects. ³⁶

In addition, anecdotal reports are usually a consequence of the use of smoked marijuana adding difficulties to the interpretation of results and the clarification of the effect of each different cannabinoids. Indeed, the complex interactions among the cannabinoid contained in marijuana are not fully known and may contribute to the final effectiveness of marijuana. Some individual cannabinoids, such as nabilone and dronabinol, have shown some potential interest as analgesics, although their efficacy in pain patients seems lower than the alleged effects of marijuana. ²³

11. Safety concerns and benefit to risk ratio

One of the most important barriers to the clinical use of cannabinoids arises from concerns on its safety profile. This may be a consequence of the reputation of these compounds in recreational use, even when their toxicity is clearly low compared with other drugs. Indeed, clinical trials have shown that cannabinoid adverse events are not frequent or more severe than those of other centrally acting analgesics. 116

Repeated worries have been expressed on the possibility of chronic use of cannabinoids. The possibility of addiction, the risk of psychotic disorders, or exacerbation of previous psychiatric diseases have been invoked to justify the restriction of the use of these drugs. Other cannabinoid side effects related to mental health include symptoms of depersonalization, derealization, irrational panic and paranoia, amotivational syndrome, and cannabis withdrawal syndrome, which consists of anxiety, irritability, physical symptoms, and decreases in appetite or weight loss. 125 However, most of the evidences of these cannabinoid adverse effects come from their recreative use. The possible risks of cannabinoids on mental health must be particularly taken into consideration in long-term treatments with needs for close monitorization and appropriate exclusion criteria considering the psychiatric history of the patients. Additional concerns have been raised from the possibility of the detrimental effects of cannabinoids in brain development in young patients²³ or the possibility to reduce the olfactory acuity. 115

The combined number of patients needed to obtain 50% relief with cannabinoids in neuropathic pain is 3.4, 33 which may justify its potential use, provided the safety is adequate. This safety to risk ratio must be always considered for every possible patient.

12. Future perspectives

New strategies for using cannabinoids more efficiently include the selective targeting of CB1R and CB2R, the inhibition of endogenous cannabinoid uptake and metabolism in selected tissues, the harnessing of cannabinoid-opioid synergies, and the delivery of cannabinoids by improved strategies. Indeed, several selective CB2R agonists and MAGL and FAAH inhibitors have shown promising analgesic activity in preclinical models of neuropathic pain. However, these promising results must be confirmed in more relevant animal models of neuropathic pain with experimental

conditions closer to the clinical conditions. The widely reported synergistic effects between cannabinoid and opioid compounds⁷⁵ also open interesting possibilities to be explored in future clinical trials.

Spray preparations with a mix of THC and cannabidiol have given new perspectives on the use of cannabinoids in humans until then limited by the moderate efficacy of oral cannabinoids and safety of smoked marijuana. However, more RCTs are needed to explore a dose escalation in patients given the present relatively low dose of the combinations. The use of cannabidiol has also opened the possibility of the use of other phytocannabinoids in neuropathic pain treatment. New devices that deliver cannabinoids more efficiently open promising approaches. Thus, a novel, portable, thermal-metered-dose inhaler that allows the administration of a single cannabis dose has been recently developed, showing a uniform pharmacokinetic profile and a significant reduction in pain in neuropathic pain patients. 29

13. Concluding remarks

Preclinical studies have widely reported the potential interest of cannabinoids in neuropathic pain treatment. CB2R, FAAH, and MAGL have also been recently identified as novel targets within the ECS to develop more selective compounds devoid of the classical cannabimimetic side effects. In agreement with these preclinical data, some systematic reviews and meta-analyses have shown that cannabinoids allow modest pain reduction, but its analgesic effect may be offset by potentially serious harms; additionally, further highquality studies are needed to establish the duration of the treatment and the optimal route of administration. However, the different patient populations with pain included in the systematic reviews make it difficult to get adequate conclusions. Use of orally administered cannabinoids fails to provide adequate relief, whereas smoked or vaporized marijuana seems more effective. Safety concerns in terms of mental health risk must be taken into consideration mainly for chronic use. Recently, the Canadian Pain Society has advanced cannabinoids to third-line agents in the management of chronic neuropathic pain based on the results of the last published RCTs. 12 However, they advised a close monitoring mainly with long-term treatments and the contraindication in patients with a history of psychosis. Large-scale RCTs that consider an adequate number of patients, use active treatments as controls, and longer duration of administration are required to have an adequate profile of the effectiveness and safety of cannabinoids in neuropathic pain.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Supported by the "Ministerio de Economía y Competitividad-MINECO" (SAF2011-29846 and #SAF2014-59648-P), the "Instituto de Salud Carlos III" (RETICS-RTA, #RD12/0028/0023), the "Generalitat de Catalunya-AGAUR" (#2014-SGR-1547), and the European Commission (NeuroPain, #HEALTH-F2-2013-602891) to R. Maldonado.

Article history:

Received 28 September 2015 Received in revised form 6 November 2015 Accepted 6 November 2015 Available online 14 November 2015

References

 Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S, Kelly ME, Rowbotham MC, Petersen KL. Cannabis in painful HIV-associated sensory

- neuropathy: a randomized placebo-controlled trial. Neurology 2007;68: 515-21.
- [2] Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, Rubino T, Michalski CW, Marsicano G, Monory K, Mackie K, Marian C, Batkai S, Parolaro D, Fischer MJ, Reeh P, Kunos G, Kress M, Lutz B, Woolf CJ, Kuner R. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 2007;10:870–9.
- [3] Ahmed MM, Rajpal S, Sweeney C, Gerovac TA, Allcock B, McChesney S, Patel AU, Tilghman JI, Miranpuri GS, Resnick DK. Cannabinoid subtype-2 receptors modulate the antihyperalgesic effect of WIN 55,212-2 in rats with neuropathic spinal cord injury pain. Spine J 2010;10:1049–54.
- [4] Attal N, Bouhassira D. Pharmacotherapy of neuropathic pain: which drugs, which treatment algorithms? PAIN 2015;156:S104–14.
- [5] Attal N, Brasseur L, Guirimand D, Clermond-Gnamien S, Atlami S, Bouhassira D. Are oral cannabinoids safe and effective in refractory neuropathic pain? Eur J Pain 2004;8:173–7.
- [6] Attal N, Cruccu G, Baron R, Haanpää M, Hansson P, Jensen TS, Nurmikko T. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol 2010;17:1113–e88.
- [7] Attal N, Lanteri-Minet M, Laurent B, Fermanian J, Bouhassira D. The specific disease burden of neuropathic pain: results of a French nationwide survey. PAIN 2011;152:2836–43.
- [8] Backonja MM, Stacey B. Neuropathic pain symptoms relative to overall pain rating. J Pain 2004;5:491–7.
- [9] Basbaum Al, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009;139:267–84.
- [10] Bauer CS, Nieto-Rostro M, Rahman W, Tran-Van-Minh A, Ferron L, Douglas L, Kadurin I, Sri Ranjan Y, Fernandez-Alacid L, Millar NS, Dickenson AH, Lujan R, Dolphin AC. The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. J Neurosci 2009;29:4076–88.
- [11] Berman JS, Symonds C, Birch R. Efficacy of two cannabis based medicinal extracts for relief of central neuropathic pain from brachial plexus avulsion: results of a randomised controlled trial. PAIN 2004;112:299–306.
- [12] Boychuk DG, Goddard G, Mauro G, Orellana MF. The effectiveness of cannabinoids in the management of chronic nonmalignant neuropathic pain: a systematic review. J Oral Facial Pain Headache 2015;29:7–14.
- [13] Brownjohn PW, Ashton JC. Spinal cannabinoid CB2 receptors as a target for neuropathic pain: an investigation using chronic constriction injury. Neuroscience 2012;203:180–93.
- [14] Butler S, Jonzon B, Branting-Ekenbäck C, Wadell C, Farahmand B. Predictors of severe pain in a cohort of 5271 individuals with selfreported neuropathic pain. PAIN 2013;154:141–6.
- [15] Campbell FA, Tramèr MR, Carroll D, Reynolds DJ, Moore RA, McQuay HJ. Are cannabinoids an effective and safe treatment option in the management of pain? A qualitative systematic review. BMJ 2001;323:13–6.
- [16] Cardoso-Cruz H, Lima D, Galhardo V. Impaired spatial memory performance in a rat model of neuropathic pain is associated with reduced hippocampus-prefrontal cortex connectivity. J Neurosci 2013; 33:2465–80.
- [17] Chanda PK, Gao Y, Mark L, Btesh J, Strassle BW, Lu P, Piesla MJ, Zhang M-Y, Bingham B, Uveges A, Kowal D, Garbe D, Kouranova EV, Ring RH, Bates B, Pangalos MN, Kennedy JD, Whiteside GT, Samad TA. Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system. Mol Pharmacol 2010;78: 996–1003.
- [18] Chen G, Park CK, Xie RG, Berta T, Nedergaard M, Ji RR. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain 2014;137: 2193–209.
- [19] Chen Y, Li GW, Wang C, Gu Y, Huang LYM. Mechanisms underlying enhanced P2X receptor-mediated responses in the neuropathic pain state. PAIN 2005;119:38–48.
- [20] Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature 2014;509:282–3.
- [21] Cohen SP. Cannabinoids for chronic pain. BMJ 2008;336:167-8.
- [22] Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 2009; 32:1–32.
- [23] D'Souza DC, Ranganathan M. Medical Marijuana. JAMA 2015;313: 2431.
- [24] Dagon Y, Avraham Y, Link G, Zolotarev O, Mechoulam R, Berry EM. The synthetic cannabinoid HU-210 attenuates neural damage in diabetic mice and hyperglycemic pheochromocytoma PC12 cells. Neurobiol Dis 2007:27:174–81.
- [25] Denk F, Huang W, Sidders B, Bithell A, Crow M, Grist J, Sharma S, Ziemek D, Rice ASC, Buckley NJ, McMahon SB. HDAC inhibitors

- attenuate the development of hypersensitivity in models of neuropathic pain. PAIN 2013;154:1668–79.
- [26] Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988;34:605–13.
- [27] Dimitrov EL, Tsuda MC, Cameron HA, Usdin TB. Anxiety- and depression-like behavior and impaired neurogenesis evoked by peripheral neuropathy persist following resolution of prolonged tactile hypersensitivity. J Neurosci 2014;34:12304–12.
- [28] Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A 2002;99: 10819–24.
- [29] Eisenberg E, Ogintz M, Almog S. The pharmacokinetics, efficacy, safety, and ease of use of a novel portable metered-dose cannabis inhaler in patients with chronic neuropathic pain: a phase 1a study. J Pain Palliat Care Pharmacother 2014;28:216–25.
- [30] Ellis RJ, Toperoff W, Vaida F, van den Brande G, Gonzales J, Gouaux B, Bentley H, Atkinson JH. Smoked medicinal cannabis for neuropathic pain in HIV: a randomized, crossover clinical trial. Neuropsychopharmacology 2009;34:672–80.
- [31] Fine PG, Rosenfeld MJ. Cannabinoids for neuropathic pain. Curr Pain Headache Rep 2014;18:451.
- [32] Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, Gilron I, Haanpää M, Hansson P, Jensen TS, Kamerman PR, Lund K, Moore A, Raja SN, Rice ASC, Rowbotham M, Sena E, Siddall P, Smith BH, Wallace M. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 2015;14:162–73.
- [33] Finnerup NB, Sindrup SH, Jensen TS. The evidence for pharmacological treatment of neuropathic pain. PAIN 2010;150:573–81.
- [34] Foster E, Wildner H, Tudeau L, Haueter S, Ralvenius WT, Jegen M, Johannssen H, Hösli L, Haenraets K, Ghanem A, Conzelmann KK, Bösl M, Zeilhofer HU. Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron 2015;85:1289–304.
- [35] Frank B, Serpell MG, Hughes J, Matthews JN, Kapur D. Comparison of analgesic effects and patient tolerability of nabilone and dihydrocodeine for chronic neuropathic pain: randomised, crossover, double blind study. BMJ 2008;336:199–201.
- [36] Gilron I, Dickenson AH. Emerging drugs for neuropathic pain. Expert Opin Emerg Drugs 2014;19:329–41.
- [37] Gritsch S, Lu J, Thilemann S, Wörtge S, Möbius W, Bruttger J, Karram K, Ruhwedel T, Blanfeld M, Vardeh D, Waisman A, Nave KA, Kuner R. Oligodendrocyte ablation triggers central pain independently of innate or adaptive immune responses in mice. Nat Commun 2014;5:5472.
- [38] Gustin SM, Wrigley PJ, Youssef AM, McIndoe L, Wilcox SL, Rae CD, Edden RA, Siddall PJ, Henderson LA. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. PAIN 2014;155:1027–36.
- [39] Gutierrez T, Crystal JD, Zvonok AM, Makriyannis A, Hohmann AG. Self-medication of a cannabinoid CB2 agonist in an animal model of neuropathic pain. PAIN 2011;152:1976–87.
- [40] van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N. Neuropathic pain in the general population: a systematic review of epidemiological studies. PAIN 2014;155:654–62.
- [41] Hill KP. Medical marijuana for treatment of chronic pain and other medical and psychiatric problems. JAMA 2015;313:2474.
- [42] Hoggart B, Ratcliffe S, Ehler E, Simpson KH, Hovorka J, Lejčko J, Taylor L, Lauder H, Serpell M. A multicentre, open-label, follow-on study to assess the long-term maintenance of effect, tolerance and safety of THC/CBD oromucosal spray in the management of neuropathic pain. J Neurol 2015;262:27–40.
- [43] Hu B, Doods H, Treede RD, Ceci A. Depression-like behaviour in rats with mononeuropathy is reduced by the CB2-selective agonist GW405833. PAIN 2009;143:206–12.
- [44] Ibrahim MM, Porreca F, Lai J, Albrecht PJ, Rice FL, Khodorova A, Davar G, Makriyannis A, Vanderah TW, Mata HP, Malan TP. CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci U S A 2005;102: 3093–8
- [45] Ignatowska-Jankowska BM, Baillie GL, Kinsey S, Crowe M, Ghosh S, Owens RA, Damaj IM, Poklis J, Wiley JL, Zanda M, Zanato C, Greig IR, Lichtman AH, Ross RA. A cannabinoid CB1 receptor-positive allosteric modulator reduces neuropathic pain in the mouse with no psychoactive effects. Neuropsychopharmacology 2015;40:2948–59.
- [46] Ignatowska-Jankowska BM, Ghosh S, Crowe MS, Kinsey SG, Niphakis MJ, Abdullah RA, Tao Q, O'Neal ST, Walentiny DM, Wiley JL, Cravatt BF, Lichtman AH. In vivo characterization of the highly selective

- monoacylglycerol lipase inhibitor KML29: antinociceptive activity without cannabimimetic side effects. Br J Pharmacol 2014;171: 1392–407
- [47] Inglese J. Designing innovative therapies for neuropathic pain: pros and cons of target-based drug discovery. J Peripher Nerv Syst 2014;19 (suppl 2):S6–9.
- [48] Iversen L. The science of marijuana. Oxford: Oxford University, 2000.
- [49] Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. Fundam Clin Pharmacol 2011;25:1–28.
- [50] Jhaveri MD, Sagar DR, Elmes SJ, Kendall DA, Chapman V. Cannabinoid CB2 receptor-mediated anti-nociception in models of acute and chronic pain. Mol Neurobiol 2007;36:26–35.
- [51] Joseph EK, Chen X, Khasar SG, Levine JD. Novel mechanism of enhanced nociception in a model of AIDS therapy-induced painful peripheral neuropathy in the rat. PAIN 2004;107:147–58.
- [52] Kahan M, Srivastava A, Spithoff S, Bromley L. Prescribing smoked cannabis for chronic noncancer pain: preliminary recommendations. Can Fam Physician 2014;60:1083–90.
- [53] Karst M, Salim K, Burstein S, Conrad I, Hoy L, Schneider U. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. JAMA 2003;290:1757–62.
- [54] Laedermann CJ, Cachemaille M, Kirschmann G, Pertin M, Gosselin RD, Chang I, Albesa M, Towne C, Schneider BL, Kellenberger S, Abriel H, Decosterd I. Dysregulation of voltage-gated sodium channels by ubiquitin ligase NEDD4-2 in neuropathic pain. J Clin Invest 2013;123: 3002–13.
- [55] Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, Glick S, Ingrao J, Klassen-Ross T, Lacroix-Fralish ML, Matsumiya L, Sorge RE, Sotocinal SG, Tabaka JM, Wong D, van den Maagdenberg AM, Ferrari MD, Craig KD, Mogil JS. Coding of facial expressions of pain in the laboratory mouse. Nat Methods 2010;7:447–9.
- [56] Langford RM, Mares J, Novotna A, Vachova M, Novakova I, Notcutt W, Ratcliffe S. A double-blind, randomized, placebo-controlled, parallelgroup study of THC/CBD oromucosal spray in combination with the existing treatment regimen, in the relief of central neuropathic pain in patients with multiple sclerosis. J Neurol 2013;260:984–97.
- [57] Langley PC, Van Litsenburg C, Cappelleri JC, Carroll D. The burden associated with neuropathic pain in Western Europe. J Med Econ 2013; 16:85–95.
- [58] Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009;10:895–926.
- [59] Lau BK, Vaughan CW. Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. Curr Opin Neurobiol 2014;29: 159–64.
- [60] Leite-Almeida H, Almeida-Torres L, Mesquita AR, Pertovaara A, Sousa N, Cerqueira JJ, Almeida A. The impact of age on emotional and cognitive behaviours triggered by experimental neuropathy in rats. PAIN 2009;144:57–65.
- [61] Lim TK, Shi XQ, Martin HC, Huang H, Luheshi G, Rivest S, Zhang J. Blood-nerve barrier dysfunction contributes to the generation of neuropathic pain and allows targeting of injured nerves for pain relief. PAIN 2014;155:954–67.
- [62] Lynch ME, Campbell F. Cannabinoids for treatment of chronic noncancer pain; a systematic review of randomized trials. Br J Clin Pharmacol 2011;72:735–44.
- [63] Lynch ME, Cesar-Rittenberg P, Hohmann AG. A double-blind, placebocontrolled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J Pain Symptom Manage 2014;47:166–73.
- [64] Martín-Sánchez E, Furukawa TA, Taylor J, Martin JL. Systematic review and meta-analysis of cannabis treatment for chronic pain. Pain Med 2009;10:1353–68.
- [65] Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, Piomelli D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 1994;372:686–91.
- [66] McQuay HJ. More evidence cannabis can help in neuropathic pain. CMAJ 2010;182:1494–5.
- [67] Miraucourt LS, Peirs C, Dallel R, Voisin DL. Glycine inhibitory dysfunction turns touch into pain through astrocyte-derived D-serine. PAIN 2011; 152:1340–8.
- [68] Mitrirattanakul S, Ramakul N, Guerrero AV, Matsuka Y, Ono T, Iwase H, Mackie K, Faull KF, Spigelman I. Site-specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain. PAIN 2006;126:102–14.
- [69] Mòdol L, Cobianchi S, Navarro X. Prevention of NKCC1 phosphorylation avoids downregulation of KCC2 in central sensory pathways and reduces neuropathic pain after peripheral nerve injury. PAIN 2014;155:1577–90.

- [70] Mogil JS, Crager SE. What should we be measuring in behavioral studies of chronic pain in animals? PAIN 2004;112:12–5.
- [71] Mogil JS, Graham AC, Ritchie J, Hughes SF, Austin JS, Schorscher-Petcu A, Langford DJ, Bennett GJ. Hypolocomotion, asymmetrically directed behaviors (licking, lifting, flinching, and shaking) and dynamic weight bearing (gait) changes are not measures of neuropathic pain in mice. Mol Pain 2010;6:34.
- [72] Moulin D, Boulanger A, Clark AJ, Clarke H, Dao T, Finley GA, Furlan A, Gilron I, Gordon A, Morley-Forster PK, Sessle BJ, Squire P, Stinson J, Taenzer P, Velly A, Ware MA, Weinberg EL, Williamson OD. Pharmacological management of chronic neuropathic pain: revised consensus statement from the Canadian Pain Society. Pain Res Manag 2014;19:328–35.
- [73] Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993;365:61–5.
- [74] Murineddu G, Deligia F, Dore A, Pinna G, Asproni B, Pinna GA. Different classes of CB2 ligands potentially useful in the treatment of pain. Recent Pat CNS Drug Discov 2013;8:42–69.
- [75] Nadal X, La Porta C, Andreea Bura S, Maldonado R. Involvement of the opioid and cannabinoid systems in pain control: new insights from knockout studies. Eur J Pharmacol 2013;716:142–57.
- [76] Narita M, Kaneko C, Miyoshi K, Nagumo Y, Kuzumaki N, Nakajima M, Nanjo K, Matsuzawa K, Yamazaki M, Suzuki T. Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology 2006;31:739–50.
- [77] Nasirinezhad F, Jergova S, Pearson JP, Sagen J. Attenuation of persistent pain-related behavior by fatty acid amide hydrolase (FAAH) inhibitors in a rat model of HIV sensory neuropathy. Neuropharmacology 2015;95:100–9.
- [78] Navratilova E, Xie JY, King T, Porreca F. Evaluation of reward from pain relief. Ann N Y Acad Sci 2013;1282:1–11.
- [79] Navratilova E, Xie JY, Meske D, Qu C, Morimura K, Okun A, Arakawa N, Ossipov M, Fields HL, Porreca F. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J Neurosci 2015;35: 7264–71.
- [80] Notcutt W, Price M, Miller R, Newport S, Phillips C, Simmons S, Sansom C. Initial experiences with medicinal extracts of cannabis for chronic pain: results from 34 "N of 1" studies. Anaesthesia 2004;59:440–52.
- [81] Nurmikko TJ, Serpell MG, Hoggart B, Toomey PJ, Morlion BJ, Haines D. Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial. PAIN 2007; 133:210–20.
- [82] Obara I, Parkitna JR, Korostynski M, Makuch W, Kaminska D, Przewlocka B, Przewlocki R. Local peripheral opioid effects and expression of opioid genes in the spinal cord and dorsal root ganglia in neuropathic and inflammatory pain. PAIN 2009;141:283–91.
- [83] Ossipov MH, Morimura K, Porreca F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care 2014;8:143–51.
- [84] Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006;58: 389-462.
- [85] Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA. International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacol Rev 2010;62:588–631.
- [86] Petrenko AB, Yamazaki M, Sakimura K, Kano M, Baba H. Augmented tonic pain-related behavior in knockout mice lacking monoacylglycerol lipase, a major degrading enzyme for the endocannabinoid 2arachidonoylglycerol. Behav Brain Res 2014;271:51–8.
- [87] Pharmacological characterization of a novel cannabinoid ligand, MDA19, for treatment of neuropathic pain. Anesth Analg 2010;11:99–109.
- [88] La Porta C, Bura SA, Aracil-Fernández A, Manzanares J, Maldonado R. Role of CB1 and CB2 cannabinoid receptors in the development of joint pain induced by monosodium iodoacetate. PAIN 2013;154: 160–74.
- [89] Povedano M, Gascón J, Gálvez R, Ruiz M, Rejas J. Cognitive function impairment in patients with neuropathic pain under standard conditions of care. J Pain Symptom Manag 2007;33:78–89.
- [90] Racz I, Nadal X, Alferink J, Baños JE, Rehnelt J, Martín M, Pintado B, Gutierrez-Adan A, Sanguino E, Bellora N, Manzanares J, Zimmer A, Maldonado R. Interferon-gamma is a critical modulator of CB(2) cannabinoid receptor signaling during neuropathic pain. J Neurosci 2008;28:12136–45.
- [91] Racz I, Nadal X, Alferink J, Baños JE, Rehnelt J, Martín M, Pintado B, Gutierrez-Adan A, Sanguino E, Manzanares J, Zimmer A, Maldonado R. Crucial role of CB(2) cannabinoid receptor in the regulation of central

- S32
- immune responses during neuropathic pain. J Neurosci 2008;28: 12125–35
- [92] Rácz I, Nent E, Erxlebe E, Zimmer A. CB1 receptors modulate affective behaviour induced by neuropathic pain. Brain Res Bull 2015:114:42–8.
- [93] Rahn EJ, Hohmann AG. Cannabinoids as pharmacotherapies for neuropathic pain: from the bench to the bedside. Neurotherapeutics 2009;6:713–37.
- [94] Rintala DH, Fiess RN, Tan G, Holmes SA, Bruel BM. Effect of dronabinol on central neuropathic pain after spinal cord injury: a pilot study. Am J Phys Med Rehabil 2010;89:840–8.
- [95] Rog DJ, Nurmikko TJ, Friede T, Young CA. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 2005;65:812–9.
- [96] Sagar DR, Gaw AG, Okine BN, Woodhams SG, Wong A, Kendall DA, Chapman V. Dynamic regulation of the endocannabinoid system: implications for analgesia. Mol Pain 2009;5:59.
- [97] Sawada A, Niiyama Y, Ataka K, Nagaishi K, Yamakage M, Fujimiya M. Suppression of bone marrow-derived microglia in the amygdala improves anxiety-like behavior induced by chronic partial sciatic nerve ligation in mice. PAIN 2014;155:1762–72.
- [98] Schaefer C, Mann R, Sadosky A, Daniel S, Parsons B, Nalamachu S, Stacey BR, Tuchman M, Anschel A, Nieshoff E. Health status, function, productivity, and costs among individuals with idiopathic painful peripheral neuropathy with small fiber involvement in the United States: results from a retrospective chart review and cross-sectional survey. J Med Econ 2014;17:394–407.
- [99] Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Pan B, Kinsey SG, Nguyen PT, Ramesh D, Booker L, Burston JJ, Thomas EA, Selley DE, Sim-Selley LJ, Liu Q, Lichtman AH, Cravatt BF. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci 2010;13:1113–9.
- [100] Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007;10:1361–8.
- [101] Selvarajah D, Gandhi R, Emery CJ, Tesfaye S. Randomized placebocontrolled double-blind clinical trial of cannabis-based medicinal product (Sativex) in painful diabetic neuropathy: depression is a major confounding factor. Diabetes Care 2010;33:128–30.
- [102] Serpell M, Ratcliffe S, Hovorka J, Schofield M, Taylor L, Lauder H, Ehler E. A double-blind, randomized, placebo-controlled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment. Eur J Pain 2014;18:999–1012.
- [103] Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Marnett LJ, Di Marzo V, Pittman QJ, Patel KD, Sharkey KA. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 2005;310:329–32.
- [104] da Silva KA, Paszcuk AF, Passos GF, Silva ES, Bento AF, Meotti FC, Calixto JB. Activation of cannabinoid receptors by the pentacyclic triterpene α,β -amyrin inhibits inflammatory and neuropathic persistent pain in mice. PAIN 2011;152:1872–87.
- [105] Simons LE, Kaczynski KJ, Conroy C, Logan DE. Fear of pain in the context of intensive pain rehabilitation among children and adolescents with neuropathic pain: associations with treatment response. J Pain 2012;13:1151–61.
- [106] Sorge RE, Mapplebeck JCS, Rosen S, Beggs S, Taves S, Alexander JK, Martin LJ, Austin JS, Sotocinal SG, Chen D, Yang M, Shi XQ, Huang H, Pillon NJ, Bilan PJ, Tu Y, Klip A, Ji R-R, Zhang J, Salter MW, Mogil JS. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 2015;18:1081–3.
- [107] Sotocinal SG, Sorge RE, Zaloum A, Tuttle AH, Martin LJ, Wieskopf JS, Mapplebeck JCS, Wei P, Zhan S, Zhang S, McDougall JJ, King OD, Mogil JS. The rat grimace scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol Pain 2011;7:55.
- [108] Svendsen KB, Jensen TS, Bach FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. BMJ 2004;329:253

- [109] Toth C, Mawani S, Brady S, Chan C, Liu C, Mehina E, Garven A, Bestard J, Korngut L. An enriched-enrolment, randomized withdrawal, flexibledose, double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in the treatment of diabetic peripheral neuropathic pain. PAIN 2012;153:2073–82.
- [110] Tsantoulas C, Zhu L, Shaifta Y, Grist J, Ward JPT, Raouf R, Michael GJ, McMahon SB. Sensory neuron downregulation of the Kv9.1 potassium channel subunit mediates neuropathic pain following nerve injury. J Neurosci 2012;32:17502–13.
- [111] Uhelski ML, Khasabova IA, Simone DA. Inhibition of anandamide hydrolysis attenuates nociceptor sensitization in a murine model of chemotherapy-induced peripheral neuropathy. J Neurophysiol 2015; 113:1501–10.
- [112] Vaughan CW, Connor M, Bagley EE, Christie MJ. Actions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro. Mol Pharmacol 2000;57: 288–95.
- [113] Vit JP, Ohara PT, Bhargava A, Kelley K, Jasmin L. Silencing the Kir4.1 potassium channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior in the absence of nerve injury. J Neurosci 2008;28:4161–71.
- [114] Wade DT, Robson P, House H, Makela P, Aram J. A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin Rehabil 2003;17: 21–9.
- [115] Walter C, Oertel BG, Ludyga D, Ultsch A, Hummel T, Lötsch J. Effects of 20 mg oral $\Delta(9)$ -tetrahydrocannabinol on the olfactory function of healthy volunteers. Br J Clin Pharmacol 2014;78:961–9.
- [116] Wang T, Collet JP, Shapiro S, Ware MA. Adverse effects of medical cannabinoids: a systematic review. CMAJ 2008;178:1669–78.
- [117] Ware MA, Adams H, Guy GW. The medicinal use of cannabis in the UK: results of a nationwide survey. Int J Clin Pract 2005;59:291–5.
- [118] Ware MA, Desroches J. Medical cannabis and pain. PAIN 2014;22: 1–7
- [119] Ware MA, Wang T, Shapiro S, Robinson A, Ducruet T, Huynh T, Gamsa A, Bennett GJ, Collet JP. Smoked cannabis for chronic neuropathic pain: a randomized controlled trial. CMAJ 2010;182:E694–701.
- [120] Warwick RA, Hanani M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur J Pain 2013;17:571–80.
- [121] Wasserman JK, Koeberle PD. Development and characterization of a hemorrhagic rat model of central post-stroke pain. Neuroscience 2009;161:173–83.
- [122] Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, Keurentjes JC, Lang S, Misso K, Ryder S, Schmidlkofer S, Westwood M, Kleijnen J. Cannabinoids for medical use. JAMA 2015; 313:2456.
- [123] Wilsey B, Marcotte T, Deutsch R, Gouaux B, Sakai S, Donaghe H. Low-dose vaporized cannabis significantly improves neuropathic pain. J Pain 2013;14:136–48.
- [124] Wilsey B, Marcotte T, Tsodikov A, Millman J, Bentley H, Gouaux B, Fishman S. A randomized, placebo-controlled, crossover trial of cannabis cigarettes in neuropathic pain. J Pain 2008;9:506–21.
- [125] Wilson N, Cadet JL. Comorbid mood, psychosis, and marijuana abuse disorders: a theoretical review. J Addict Dis 2009;28:309–19.
- [126] Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science 2002;296:678–82.
- [127] Wu J, Zhao Z, Sabirzhanov B, Stoica BA, Kumar A, Luo T, Skovira J, Faden Al. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J Neurosci 2014;34:10989–1006.
- [128] Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O'Donnell D. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci 2003;17:2750–4.
- [129] Zhao X, Tang Z, Zhang H, Atianjoh FE, Zhao JY, Liang L, Wang W, Guan X, Kao SC, Tiwari V, Gao YJ, Hoffman PN, Cui H, Li M, Dong X, Tao YX. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci 2013;16:1024–31.